Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 901880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846750

RESUMO

In the pathogen Typanosoma cruzi, the calcium ion (Ca2+) regulates key processes for parasite survival. However, the mechanisms decoding Ca2+ signals are not fully identified or understood. Here, we investigate the role of a hypothetical Ca2+-binding protein named TcCAL1 in the in vitro life cycle of T. cruzi. Results showed that the overexpression of TcCAL1 fused to a 6X histidine tag (TcCAL1-6xHis) impaired the differentiation of epimastigotes into metacyclic trypomastigotes, significantly decreasing metacyclogenesis rates. When the virulence of transgenic metacyclic trypomastigotes was explored in mammalian cell invasion assays, we found that the percentage of infection was significantly higher in Vero cells incubated with TcCAL1-6xHis-overexpressing parasites than in controls, as well as the number of intracellular amastigotes. Additionally, the percentage of Vero cells with adhered metacyclic trypomastigotes significantly increased in samples incubated with TcCAL1-6xHis-overexpressing parasites compared with controls. In contrast, the differentiation rates from metacyclic trypomastigotes to axenic amastigotes or the epimastigote proliferation in the exponential phase of growth have not been affected by TcCAL1-6xHis overexpression. Based on our findings, we speculate that TcCAL1 exerts its function by sequestering intracellular Ca2+ by its EF-hand motifs (impairing metacyclogenesis) and/or due to an unknown activity which could be amplified by the ion binding (promoting cell invasion). This work underpins the importance of studying the kinetoplastid-specific proteins with unknown functions in pathogen parasites.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Chlorocebus aethiops , Estágios do Ciclo de Vida , Mamíferos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Células Vero
2.
Front Cell Infect Microbiol ; 12: 897133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903201

RESUMO

Lipopolysaccharide (LPS) induces the activation of dendritic cells (DCs) throughout the engagement of toll-like receptor 4. LPS-activated DCs show increased capacity to process and present pathogen-derived antigens to activate naïve T cells. DCs-based vaccines have been successfully used to treat some cancer types, and lately transferred to the field of infectious diseases, in particular against HIV. However, there is no vaccine or DC therapy for any parasitic disease that is currently available. The immune response against Trypanosoma cruzi substantially relies on T cells, and both CD4+ and CD8+ T lymphocytes are required to control parasite growth. Here, we develop a vaccination strategy based on DCs derived from bone marrow, activated with LPS and loaded with TsKb20, an immunodominant epitope of the trans-sialidase family of proteins. We extensively characterized the CD8+ T cell response generated after immunization and compared three different readouts: a tetramer staining, ELISpot and Activation-Induced Marker (AIM) assays. To our knowledge, this work shows for the first time a proper set of T cell markers to evaluate specific CD8+ T cell responses in mice. We also show that our immunization scheme confers protection against T. cruzi, augmenting survival and reducing parasite burden in female but not male mice. We conclude that the immunization with LPS-activated DCs has the potential to prime significant CD8+ T cell responses in C57BL/6 mice independently of the sex, but this response will only be effective in female, possibly due to mice sexual dimorphisms in the response generated against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Linfócitos T CD8-Positivos , Doença de Chagas/parasitologia , Células Dendríticas , Feminino , Imunização , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
3.
STAR Protoc ; 2(3): 100703, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34505085

RESUMO

The pathogen Trypanosoma cruzi differentiates from epimastigotes (E) into infective metacyclic trypomastigotes (MTs) to invade the mammalian cell. This process, called metacyclogenesis, is mimicked in vitro by nutrient starvation or incubation with minimal media. Here, we describe an alternative protocol for metacyclogenesis by incubating E forms in a biphasic medium supplemented with human blood. Although time consuming, this procedure yields fully differentiated MTs without the presence of intermediate forms, even for cultures that have been maintained as E for years.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Estágios do Ciclo de Vida/fisiologia , Trypanosoma cruzi/genética , Proteínas de Protozoários , Trypanosoma cruzi/citologia , Trypanosoma cruzi/metabolismo
4.
Mol Immunol ; 138: 68-75, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364074

RESUMO

Arginine kinase (AK) is an enzyme present in various invertebrates, as well as in some trypanosomatids such as T. cruzi, the etiological agent that causes Chagas disease. In invertebrates, this protein acts as an allergen inducing an IgE-type humoral immune response. Since AK is a highly conserved protein, we decided to study whether patients with chronic Chagas disease (CCD) produce specific antibodies against T. cruzi AK (TcAK). Plasma from patients with CCD, with and without cardiac alterations and non-infected individuals were evaluated for the presence of anti-TcAK IgG and IgE antibodies by ELISA, including detection of specific IgG subclasses. Our results showed that the levels of specific anti-TcAK IgG and IgE were different between infected and non-infected individuals, but comparable between those with different clinical manifestations. Interestingly, anti-TcAK IgG4 antibodies associated with IgE-mediated allergenic processes were also increased in CCD patients. Finally, we found that several of the predicted B cell epitopes in TcAK matched allergenic peptides previously described for its homologues in other organisms. Our results revealed for the first time a parasite's specific IgE antibody target and suggest that TcAK could contribute to delineate an inefficient B cell response by prompting a bias towards a Th2 profile. These findings also shed light on a potential allergenic response in the context of T. cruzi infection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Arginina Quinase/imunologia , Doença de Chagas/imunologia , Adulto , Idoso , Epitopos de Linfócito B , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina E , Masculino , Pessoa de Meia-Idade , Trypanosoma cruzi/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...